skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nakos, Vasileios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Estimating the cardinality of the output of a query is a fundamental problem in database query processing. In this article, we overview a recently published contribution that casts the cardinality estimation problem as linear optimization and computes guaranteed upper bounds on the cardinality of the output for any full conjunctive query. The objective of the linear program is to maximize the joint entropy of the query variables and its constraints are the Shannon information inequalities and new information inequalities involving ℓp-norms of the degree sequences of the join attributes. The bounds based on arbitrary norms can be asymptotically lower than those based on the ℓ1 and ℓ∞ norms, which capture the cardinalities and respectively the max-degrees of the input relations. They come with a matching query evaluation algorithm, are computable in exponential time in the query size, and are provably tight when each degree sequence is on one join attribute. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  2. Estimating the output size of a query is a fundamental yet longstanding problem in database query processing. Traditional cardinality estimators used by database systems can routinely underestimate the true output size by orders of magnitude, which leads to significant system performance penalty. Recently, upper bounds have been proposed that are based on information inequalities and incorporate sizes and max-degrees from input relations, yet their main benefit is limited to cyclic queries, because they degenerate to rather trivial formulas on acyclic queries. We introduce a significant extension of the upper bounds, by incorporating lp-norms of the degree sequences of join attributes. Our bounds are significantly lower than previously known bounds, even when applied to acyclic queries. These bounds are also based on information theory, they come with a matching query evaluation algorithm, are computable in exponential time in the query size, and are provably tight when all degrees are ''simple''. 
    more » « less